

Thursdays V	Vebinars
EuroBleedN	: let

Management of DBA in adults

EuroBleedNet

ASSISTANCE DE HOPITAUX

Thierry LEBLANC

Reference Centre for Bone Marrow Failures Hôpital Robert-Debré – Assistance Publique Hôpitaux de Paris

ERN-EuroBloodNet

Co-funded by the Health Programme of the European Union

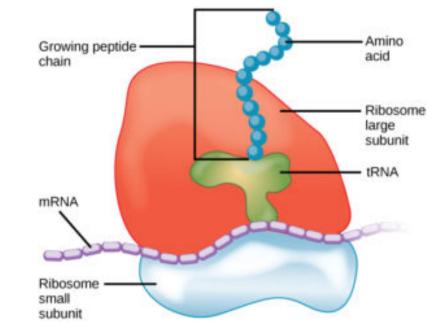
Paris, France 16 APRIL 2021

No conflict of interest

_

1. To think about DBA in adults and to know how to diagnose it

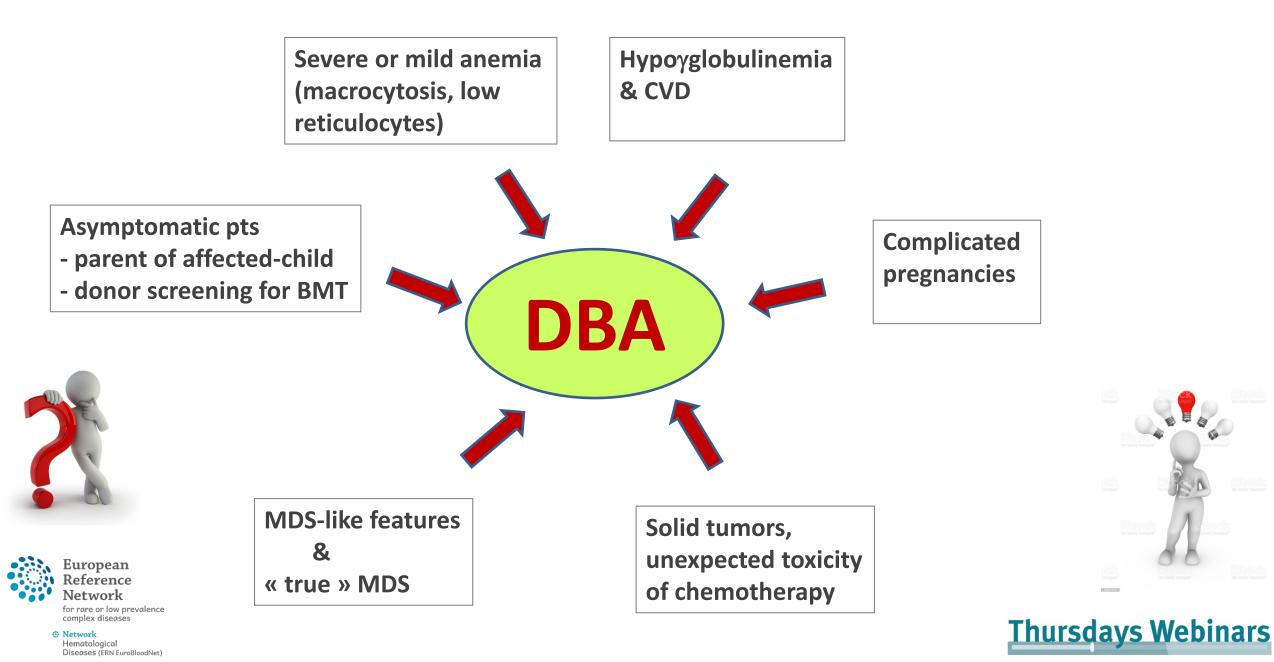
- 2. To know how to treat DBA in adult patients
- 3. To know how to follow adult patients with DBA



- Rare disease (5 to 7/1,000,000 live births in EU)
- Main cause of constitutional erythroblastopenia

Ribosomopathy

- Genetic transmission: mostly AD but not so simple:
 - Problem of «silent career»
 - AR & X-linked transmission also reported
- Very heterogeneous disease both for genetic & for clinical aspects



_

CASE REPORT

Adult-onset Diamond-Blackfan anemia with a novel mutation in the exon 5 of RPL11: too late and too rare

Elena Flores Ballester¹, Juan José Gil-Fernández¹, Miguel Vázquez Blanco², José M. Mesa³, Juan de Dios García³, Ana T. Tamayo¹ & Carmen Burgaleta¹

¹Department of Hematology, Hospital Universitario Príncipe de Asturias, Alcalá de Henares, Madrid, Spain
²Department of Ophthalmology, Hospital Universitario Príncipe de Asturias, Alcalá de Henares, Madrid, Spain
³Department of Genetics, Hospital Universitario Príncipe de Asturias, Alcalá de Henares, Madrid, Spain

Age at diagnosis: 35 yr Hb: 7.2 g/dL, MCV 93 Rt: 13 G/L GB: 4.3 G/L Platelets: 342 G/L

for rare or low prevalence complex diseases No previous BCC available

Date	Hb (g/dL)	MCV (fl)	RT (G/L)	Neutrophils (G/L)	Platelets (G/L)
30/09/2009	11.5	106	60	1.70	331
21/11/2012	10.6	103.9	45.7	2.57	265
27/11/2013	10.4	10.,3	22.2	1.64	296
21/05/2014	11.2	107.6	55.3	1.48	288
03/06/2015	9.2	101.2	6.9	1.14	289
02/12/2015	10.8	105	66.8	1.19	309
01/06/2016	10.6	105.8	42.6	2.27	ND
19/08/2016	11.5	105	51.2	1.17	321
29/11/2016	10.3	105	44.8	1.52	286
14/12/2016	10.7	103.8	ND	2.11	285
09/06/2017	11.6	106	66.57	1.66	278
22/11/2018	11.4	104	73.4	1.00	298
20/02/2019	10,8	105,9	46,4	1,28	322
25/07/2019	11.4	107	ND	1.19	333
20/02/2021	11.3	105	73.1	1.25	311

Woman born in 1965; therapeutic independence

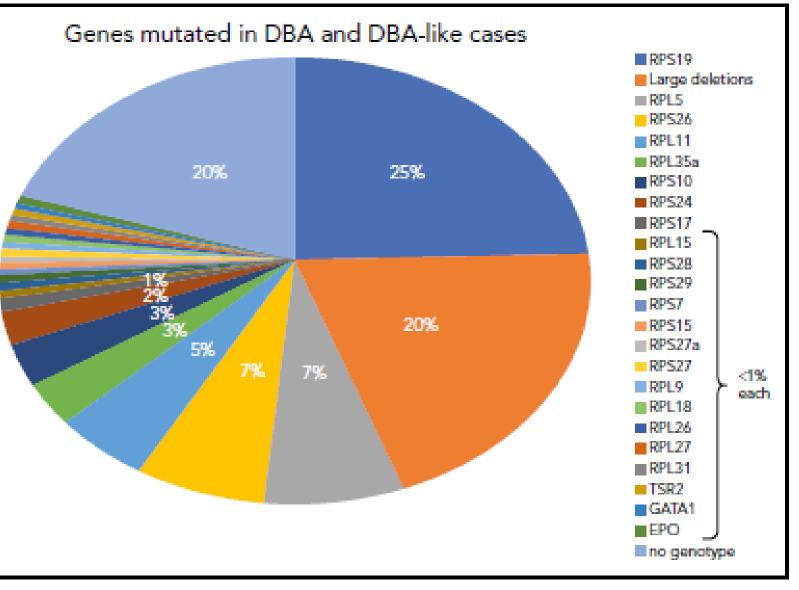
Date	Hb (g/dL)	MCV (fl)	RT (G/L)	Neutrophils (G/L)	Platelets (G/L)
16/06/2014	13.7	96	41.	3,875	219
15/10/2014	14	97.5	46.	6,300	251
01/12/2014	13.6	120	45.1	4,620	251
18/04/2015	13.	99	40.00	3,574	213
24/06/2015	14.	97.1	46.10	3,770	209
02/04/2016	14.6	97	48.51	7,228	279
09/11/2016	14.9	96.4	39.6	5,230	230
12/07/2017	12.8	100	ND	7,605	262
25/10/2017	13.4	95.2	67.2	8,720	277
02/07/2018	11.7	101	14	4.221	236
13/10/2018	13	99	80	3.55	242
13/03/2019	13.9	94.2	56.5	7.53	279
05/07/2019	13.2	98	51.5	7.80	237
23/11/2019	13	96.3	55.2	7.43	250
23/05/2020	13.4	95.4	69.9	7.94	253
26/09/2020	13.1	95.2	69.3	7.33	242
24/03/2021	13.6	96.6	60.6	7.90	297

Man born in 1966; on prednisone 10mg/d

(response obtained post metoclopramide trial. Abkowitz & al, Blood 2002)

- 1. Fetal hemoglobin: good screening test
- 2. eADA: erythrocyte deaminase (before any transfusion)
- 3. rRNA analysis
- 4. Hypo-Ig G, A, M (DBA & DADA2 syndrome)
- 5. Bone marrow aspiration analysis + Perls coloration:
- Erythroblastopenia or reduced erythrocyte lineage
- No dysplasia (if YES: cytogenetics analysis)
- No sideroblasts
- BM overall rich & normal for other lineages

6. Genetic tests



DBA Genetics (1)

Mutated gene	RP	Incidence in DBA population	Reference
Genes involved in DBA*			
RPS19	eS19	25%-30%	7,51,53-55,102
Large deletions		10%-20%	60,66-69
RPL5	uL18	7%-12%	7,57-59
RPS26	eS26	6.6%-9%	7,64
RPL11	uL5	5%-7%	7,57-59
RPL35a	eL33	2%-3%	7,60
RPS10	eS10	1%-3%	7,64
RPS24	eS24	2.4%-3%	7,61
RPS17	eS17	1%-3%	7,62,63
RPL15	eL15	1 case	12,73
		6 cases	
RPS28	eS28	2 families	48
RPS29	uS14	2 families	71
RPS7	eS7	1 case	58
RPS15	uS19	1 case	58
RPS27a	eS31	1 case	58
RPS27	eS27	1 case	70
RPL9	uL6	1 case	58
RPL18	eL18	1 family	71
RPL26	uL24	1 case	74
RPL27	eL27	1 case	70
RPL31	eL31	1 case	75
TSR2 (X linked)†		1 family	48
Genes involved in DBA-like diseases			
GATA1 (X linked)‡		5 families	47,77-80
EPO		1 case	46
ADA2§		9 individuals	7

(Da Costa L, Leblanc T, N Mohandas, Blood 2020)

Thursdays Webinars

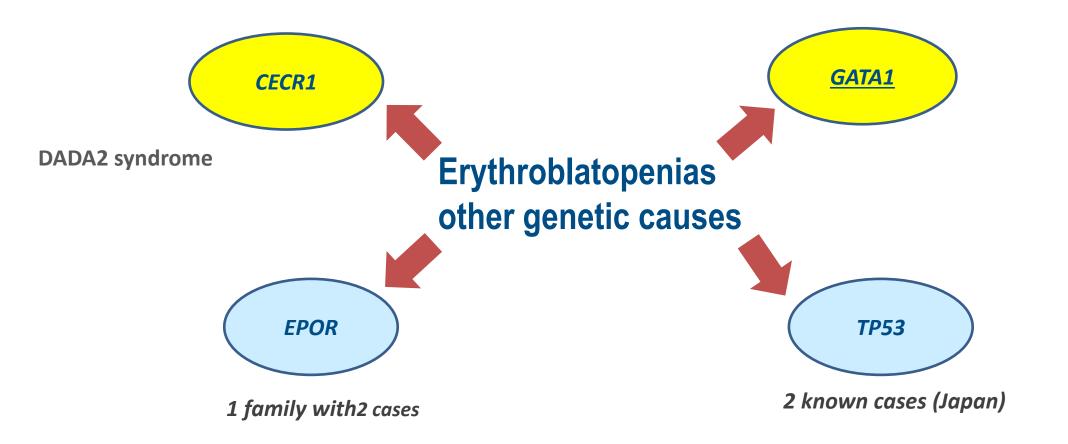
Network Hematological Diseases (ERN EuroBloodNet)

European

complex diseases

Reference Network

***** 80% patients:** identified mutation (NGS+CGH-array):


- 20 RP genes (+++ RPS19); AD transmission
- 1 non RP gene but product implicated in ribosome biogenesis: TSR2: X-linked transmission
- + genes associated with other constitutional erythroblastopenias: GATA1 (X), genes CECR1/ADA2 (AR) & EPO (AR)
- NB1: RPS19, RPL5, RPLL11, RPS26, RPL35A, RPS17: 96% of mutations
- NB2: large deletions frequent for RPS17, RPS19, RPS26 RPL5, RPL11, RPLL35a,

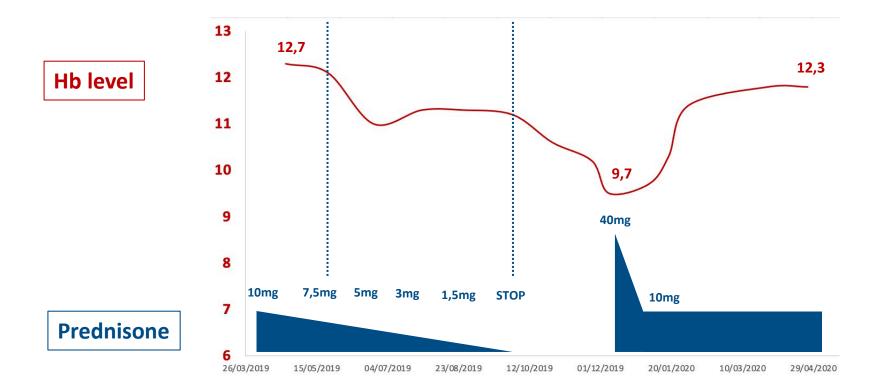
20% patients: no identified mutation ***** exome

- **1. Transfusions: recommended threshold: 90 to 100 g/dL**
- Usually 2 to 3 red cells unit every 3 to 4 weeks
- Take into account QOL
- Less intensive in pts with "high" levels of reticulocytes

2. Glucocorticoids:

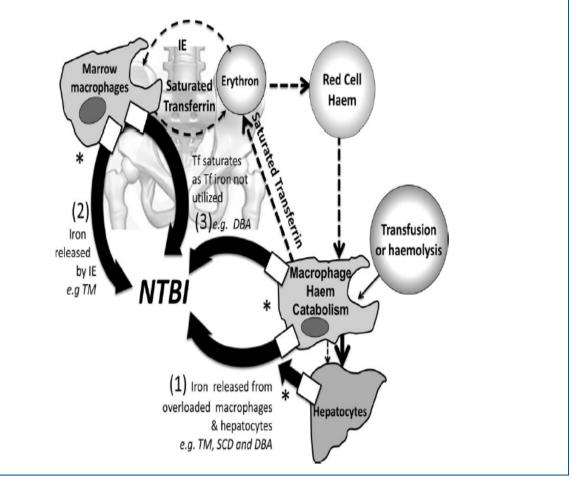
- Start prednisone at 2 mg/kg/d (maximal dose 80 mg/j)
- Taper as soon as reticulocytes rise is present (D10)
- Define the minimal efficacious dose
 - NB: in adult maximal tolerable dose: 10 mg/day

NB: about 20% of pts are free of any treatment


<mark>Network</mark> Hematological Diseases (ERN EuroBloodNet)

Mother of a child with DBA; identified mutation in both. Classified as «silent career».

Cancer: unexpected need for transfusion during treatment & after. Test for predisone efficacy after OK from the oncologist.


Thursdays Webinars

Transfused patients:

Very quick iron loading

Chelation therapy +++

- combination of two chelators frequently required
- High risk of agranulocytosis with deferiprone (~ 10%)

(Porter & al, Br J Haematol 2014)

Patients on steroids:

Unique disease for the duration of steroid treatment!

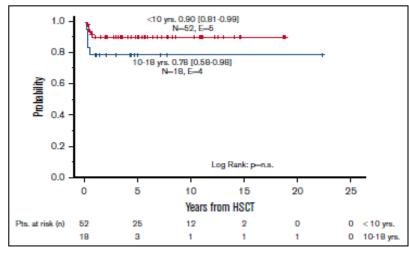
Prevention of steroid-associated toxicity +++

Loss of steroid-response not rare with aging: in some pts the choice will be between "too much steroids" (e.g. 15 or 20 mg/d) and transfusions...

DBA: alternative therapeutic approaches?

1. Leucine:

- Very few data in adult patients
- May improve general status?
- May improve response to steroids allowing dose reduction?
- Published dose: 700 mg/m² x 3/d
- 2. Metoclopramide (Abkowitz & al, Blood 2002, Leblanc & al, Blood 2006)


3. Bone marrow transplantation?

- Likely to be too toxic in adult patients
- Only indication: clonal evolution if the pt is fit enough
- 4. Gene therapy: for DBA pts mutated in RPS19 in the future

Network Hematological Diseases (ERN EuroBloodNet) (Strahm & al, Blood advances 2021)

			OS	
Item and specification	n	Prob.	95% Cl	P
Number of patients	70	91	84-98	
Year of HSCT				
<2000	19	79	60-98	
≥2000	51	96	90-100	.03
Sex				
Male	44	95	89-100	
Female	26	84	69-99	.08
Age at HSCT, y				
<10	52	94	87-100	
10-18	18	82	63-100	NS
<5	34	97	91-100	
5-9	18	88	72-100	
10-14	13	85	65-100	
15-18	5	75	32-100	NS

More severe anemia:

- Need for higher transfusion support in transfused pts
- Loss of response to steroids

Leuconeutropenia: frequent but not clinically relevant

Overall bone marrow failure?

MDS & AML:

- Very high risk in DBA patients: O/E ratio claimed to be as high as 287 (Vlachos & al, Blood 2012)
- Difficult diagnosis! Must relies mostly on cytogenetics & molecular analysis

Thursdays Webinars

Current recommendations:

- BCC + <u>reticulocytes</u> every 3 months Warning events: thrombocytopenia, paradoxal rise in reticulocytes

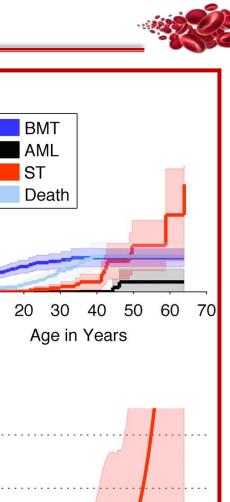
Sequential bone marrow aspiration?
No clinical benefit demonstrated so far
To be considered in DBA pts fit enough for HSCT?

Incidence of neoplasia in Diamond Blackfan anemia: a report from the Diamond Blackfan Anemia Registry

Adrianna Vlachos,1-3 Philip S. Rosenberg,4 Eva Atsidaftos,1.2 Blanche P. Alter,5 and Jeffrey M. Lipton1-3

US registry study

N = 608


FU: 9458 person-years

Solid tumors	: 15
AML	: 2
MDS	: 2

Median a	age:	41	yr
----------	------	----	----

Cumulative incidence (MDS/AML+ST) at 46 yr: 20%

To note: various ST types

Cumulative Incidence 0.8 0.6 0.4 0.2 0 10 В Year Percent per 6% 4% Rate, 2% 1% Hazard 0% 50 60 10 20 30 40 0 70 Age in Years

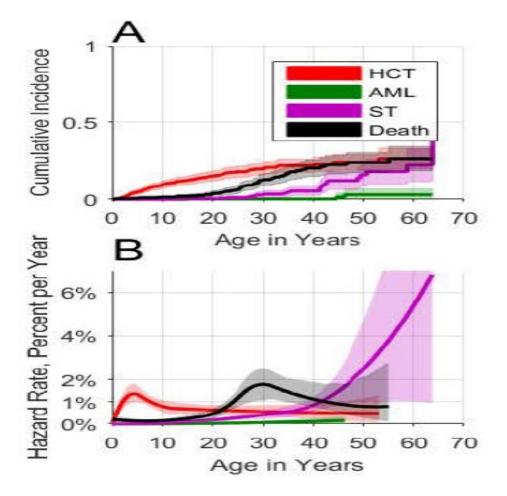
Thursdays Webinars

(Blood 2012)

	Cancer type	No. of observed cancers	O/E Ratio	95% CI
	Events with significant O/E ratios			
ſ	All cancers	18	5.4	3.2 - 8.6
	Colon (adenocarcinoma)	3	36.2	7.5 - 105.8
	Bones (osteogenic)	2	32.6	4.0 - 117.7
	Female genital	3	12.0	2.5 - 35.1
	AML	2	27.9	3.4 - 100.9
	MDS	4	287.0	77. <mark>2 - 734</mark> .7
	Events with non significant O/E ratio	S		
	Oral cavity	1	15.9	0.4 - 88.3
	Soft tissue sarcoma	1	9.8	0.3 - 54.8
	Lung	1	8.3	0.2 - 46.4
	Testis	1	8.3	0.2 - 46.1
	Non-Hodgkin lymphoma	1	5.7	0.1 - 31.7
	Melanoma	1	4.5	0.1 - 25.3
	Breast	2	4.1	0.5 - 14.9
	Furencen			

European Reference Network for rare or low prevalence complex diseases

Increased risk of colon cancer and osteogenic sarcoma in DBA running head: neoplasia in DBA


DBAR: 2nd report (N = 702)

+ 94 pts & +2198 pts/yr FU duration

34 cancers (in non grafted pts)

Median age at 1st cancer: 35 yr [11-70]

Cumulative incidence at 45 yr: 13,7%

for rare or low prevalence complex diseases Network Hematological

Diseases (ERN EuroBloodNet)

(Vlachos & al, Blood 2018)

- Do we have to screen for cancer in DBA patients?
- **Problem: many different solid tumors**

At least:

- 1) Clinical information for patients, family support groups, and physicians
- 2) Recommendations to strictly follow suggested measures for the general population
- 3) Additional screening?
- Most discussed at the moment: coloscopy: every 5 years from the age of 25?

<u>1) Risk for hypo-γ-globulinemia</u>: CVD profile

NB: CECR1 mutations: early event: DADA2 syndrome

- Very few clinical problems in my adult patients but...
- Associated with monoclonal proteins?

2) Lymphopenia:

- May be severe
- In pts on steroids or not

Yearly immunologic evaluation: +++ Ig G, A, M levels

In a patient with low Ig levels:

consider specific immunizations:
pneumococcal & meningococcal vaccination

Lung scan

Date	lgG (g/L)	lgA (g/L)	lgM (g/L)	CD3 /mm³	CD3/4 /mm ³	CD3/8 /mm³
2.11.2019	2.32	0.28	0.49	NA	NA	NA
23.09.2020	2.39	0.28	0.49	488	191	271
24.03.2021	1.75	0.23	0.74	494	181	293

DBA pt born in 1966; on prednisone: 10 mg/day Vaccinations & cotrimoxazole prophylaxis

Ig supplementation if clinical infections or occult lung disease

Efficacy of transfusion support:

QOL analysis

Higher requirement with age

Hemochromatosis:

Regular checks for diabetes, hypoparathyroidy, hypothyroidy, hypognoadism, liver functions, cardiac function,...

Iron loading FU:

Ferritin levels & transferrin saturation: Before each transfusion?

MRI evaluation: liver & heart: every 12 to 24m

Follow up for chelators toxicity

Goals for iron loading control:

- Normal liver MRI
- Low levels of ferritin: 500 to 700 μ g/L & and at best 300 to 500 μ g/l

To note:

1) even in pts with very good control, the transferrin saturation remains in the 80 to 100% range 🖙 toxicity of NTBI still present. The best is to give a chelator ANY day


2) Be aware of <u>hyperchelation</u>: toxicity of chelators is more important when ferritin is low

Ex. for deferasirox: risk for tubulopathy (hypophosphoremia) and urinary lithiasis

Woman, born in 79. DBA. Past history: hepatitis C. On transfusions: 2 units every 3 weeks then 3 units/ month. 1st visit (25.10.05): ferritin: <u>5014µg/L</u> (chélation stopped for years); clinical hemochromatosis: hypothyroïdy, diabetes & hypogonadism

CHF: µg of iron/g of liver

Thursdays Webinars

Chélation changes according to efficacy, chelator toxicity & patient adhesion):

D1 DFX 1500mg/d	27.03.13	DFX 1000 mg/d		
DFX 2000mg	08.01.14	DFX 500mg x 2/d x 4 days a wee	ek	
DFX 2125 mg	14.05.14	DFX same dose for 5 days		
DFO + DFP	13.05.15	DFX a 625 mg x 2 for 5 days		
DFP dose correction	16.09.15	DFO 3 d a week + DFX for 5d 75	50 mg x 2	
Agranulocytosis	14.02.18	DF0+DFX new formulation: 360	mg x2/d	
	DFX 2000mg DFX 2125 mg DFO + DFP DFP dose correction Agranulocytosis	DFX 2000mg 08.01.14 DFX 2125 mg 14.05.14 DFO + DFP 13.05.15 DFP dose correction 16.09.15 Agranulocytosis 14.02.18	DFX 2000mg08.01.14DFX 500mg x 2/d x 4 days a weeDFX 2125 mg14.05.14DFX same dose for 5 daysDFO + DFP13.05.15DFX a 625 mg x 2 for 5 daysDFP dose correction16.09.15DFO 3 d a week + DFX for 5d 75Agranulocytosis14.02.18DF0+DFX new formulation: 360	DFX 2000mg08.01.14DFX 500mg x 2/d x 4 days a weekDFX 2125 mg14.05.14DFX same dose for 5 daysDFO + DFP13.05.15DFX a 625 mg x 2 for 5 daysDFP dose correction16.09.15DFO 3 d a week + DFX for 5d 750 mg x 2

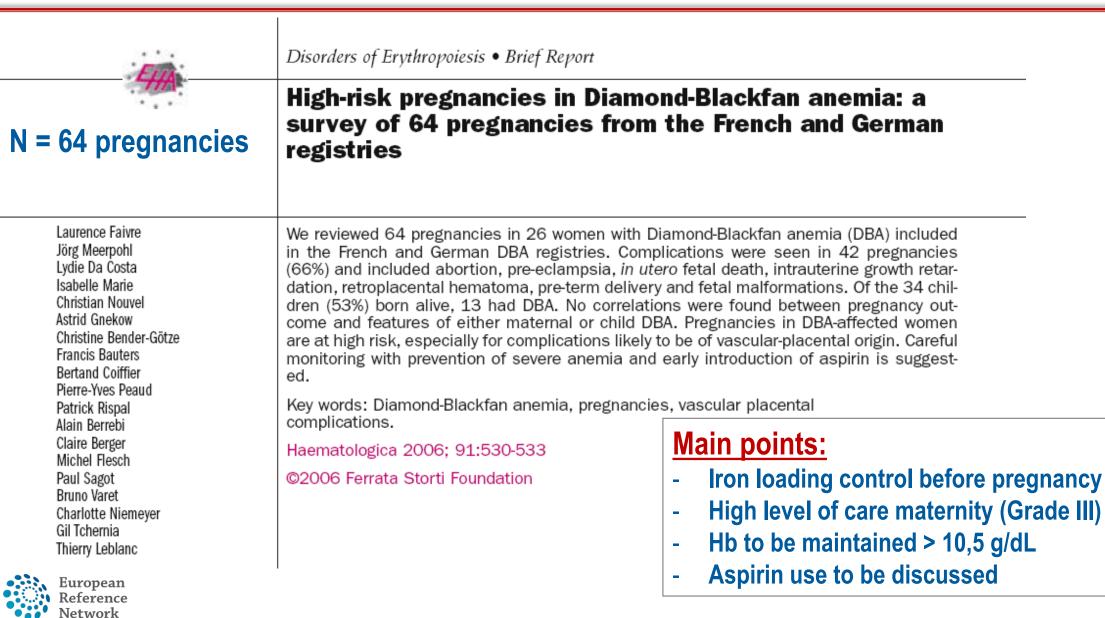
Efficacy

Prednisone may be less active with aging

Discussion with the patient on the benefice/risk ratio for steroids and transfusions

Check for steroid toxicity

Mostly:


Metabolic syndrome

Oteoporosis:

- Prevention with vitamin D
- Sequential osteodensitometry evaluations
- Biphosphonates may be needed in selected pts

Thursdays Webinars

Network Hematological Diseases (ERN EuroBloodNet)

for rare or low prevalence complex diseases

Difficult task in DBA

Main points:

- 1) The announced risk must be of 50%
- 2) There is no absolute genotype/phenotype correlation (including in a very family)
- 3) There is no evidence of genetic anticipation
- 4) Medically assisted procreation should be offered in every DBA patient (women & men)

- DBA is not only a pediatric disease and may be diagnosed in adult patients
- DBA phenotype in adults pts remains in part to be described
- DBA is associated with premature aging of the bone marrow
- DBA is a cancer-prone disease and clinical guidelines are needed regarding cancer prevention Detection and treatment
- **Genetic counseling is difficult in DBA patients**

Thank you for your attention

thierry.leblanc@aphp.fr

MaRIH network: Reference centres for rare diseases

Patients associations

for rare or low prevalence complex diseases

Network Hematological Diseases (ERN EuroBloodNet)

Acknowledgments: DBA French group

- Pr. Lydie DA COSTA Isabelle Marie
- AFMB: DBA family support group ۲

Filière de santé Maladies Rares Immuno-Hématologiques

